博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
《运筹学基础及应用》习题1.3(b)
阅读量:6620 次
发布时间:2019-06-25

本文共 1616 字,大约阅读时间需要 5 分钟。

习题1.3(b):分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解分别对应图解法中可行域的哪一顶点.

$\max z=2x_1+x_2$,
$$
s.t.
\begin{cases}
  5x_2\leq 15\\
6x_1+2x_2\leq 24\\
x_1+x_2\leq 5\\
x_1,x_2\geq 0\\
\end{cases}
$$
解:  先用图解法解决这个问题.以 $x_1$ 为横坐标,$x_2$ 为纵坐标,做图如下:
易得 $z$ 的最大值为 $8.5$.易得图上的可行域中有五个顶点,分别是$A(0,3),B(2,3),C(3.5,1.5),D(4,0),E(0,0)$.下面我们用单纯形法来解这道题.为此先把上面的线性规划问题化为标准形式,得到
$\max z=2x_1+x_2+0\cdot
x_3+0\cdot x_4+0\cdot x_5$.
$$s.t.
\begin{cases}
 0\cdot x_1+5x_2+x_3+0\cdot x_4+0\cdot x_5=15\\
6x_1+2x_2+0\cdot x_3+x_4+0\cdot x_{5}=24\\
x_1+x_2+0\cdot x_3+0\cdot x_4+x_5=5\\
x_1,x_2,x_3,x_4,x_5\geq 0
\end{cases}
$$
可得约束方程组的系数矩阵为
$$A=
\begin{bmatrix}
  0&5&1&0&0\\
6&2&0&1&0\\
1&1&0&0&1\\
\end{bmatrix}
$$
该矩阵由5个列向量组成,记第 $i(1\leq i\leq 5)$ 个列向量为 $P_i$.该矩阵由 3 个行向量组成,记第 $k$($1\leq k\leq 3$) 个行向量为 $Q_k$.易得向量 $Q_1,Q_2,Q_3$ 线性无关,因此由线性代数中的知识,我们知道 $P_1,P_2,P_3,P_4,P_5$ 中线性无关的向量不会超出 3个.我们知道,$P_3,P_4,P_5$ 肯定线性相关,因此该线性规划问题的基是存在的.我们将它们列如下:

  1. $\{P_1,P_2,P_3\}$
  2. $\{P_1,P_2,P_4\}$
  3. $\{P_1,P_2,P_5\}$
  4. $\{P_2,P_3,P_4\}$
  5. $\{P_2,P_3,P_5\}$
  6. $\{P_3,P_4,P_5\}$
  7. $\{P_1,P_3,P_4\}$
  8. $\{P_1,P_3,P_5\}$
  9. $\{P_1,P_4,P_5\}$(显然不是一组基)
  10. $\{P_2,P_4,P_5\}$

这些基对应的基解分别为

  1. $x_1=3.5,x_2=1.5,x_3=7.5$.其余皆为0.
  2. $x_1=2,x_2=3,x_4=6$.其余皆为0.
  3. $x_1=3,x_2=3,x_5=-1$.其余皆为0.
  4. $x_2=5,x_3=-10,x_4=14$.其余皆为0.
  5. $x_2=12,x_3=-45,x_5=-7$.其余皆为0.
  6. $x_3=15,x_4=24,x_5=5$.其余皆为0.
  7. $x_1=5,x_3=15,x_4=-6$.其余皆为0.
  8. $x_1=4,x_3=15,x_5=1$.其余皆为0.
  9. $x_2=3,x_4=18,x_5=2$.其余皆为0.

这些基解中,基可行解是

  1. $x_1=3.5,x_2=1.5,x_3=7.5$.其余皆为0.对应点 $C$.
  2. $x_1=2,x_2=3,x_4=6$.其余皆为0.对应点 $B$.
  3. $x_3=15,x_4=24,x_5=5$.其余皆为0.对应点 $E$.
  4. $x_1=4,x_3=15,x_5=1$.其余皆为0.对应点 $D$.
  5. $x_2=3,x_4=18,x_5=2$.其余皆为0.对应点 $A$.

转载于:https://www.cnblogs.com/yeluqing/p/3827394.html

你可能感兴趣的文章
点滴积累【C#】---初始页面自动给站点名称赋值
查看>>
awk之随机函数rand()和srand() (转)
查看>>
数字的格式化,异常处理
查看>>
MySQL中使用连接查询
查看>>
当linux没有多分区时的,swap添加方案
查看>>
[转载]html中DTD使用小结
查看>>
经典排序算法 - 冒泡排序Bubble sort
查看>>
mysql的查询、子查询及连接查询
查看>>
mysql 命令导入导出数据
查看>>
安装Ntop监控网络软件
查看>>
Exchange Server 2013 DAG高可用部署(二)-网络及先决条件准备
查看>>
专业展-2019人工智能博览会 火爆招商中
查看>>
阿里Java岗一面被问到对Spring的理解,懵了?这些你又了解多少
查看>>
并发编程
查看>>
Niushop针对商城难推广提出6大方法,一切如此简单!
查看>>
超适合小白的python新手教程
查看>>
年过四十、零基础学前端开发,歪果仁是如何从教师转行程序员的?
查看>>
教你大数据必修三大技能 快快记录下来
查看>>
网络卡顿怎么办?
查看>>
Factom(公证通)--基于区块链的存证系统
查看>>